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Abstract—Multi-robot networks use wireless communication
to provide wide-ranging services such as aerial surveillance
and unmanned delivery. However, effective coordination between
multiple robots requires trust, making them particularly vulner-
able to cyber-attacks. Specifically, such networks can be gravely
disrupted by the Sybil attack, where even a single malicious robot
can spoof a large number of fake clients. This paper proposes a
new solution to defend against the Sybil attack, without requiring
expensive cryptographic key-distribution. Our core contribution
is a novel algorithm implemented on commercial Wi-Fi radios
that can “sense” spoofers using the physics of wireless signals. We
derive theoretical guarantees on how this algorithm bounds the
impact of the Sybil Attack on a broad class of robotic coverage
problems. We experimentally validate our claims using a team
of AscTec quadrotor servers and iRobot Create ground clients,
and demonstrate spoofer detection rates over 96%.

I. INTRODUCTION
Multi-robot networks rely on wireless communication to

enable a wide range of tasks and applications: coverage [26,
5, 29], disaster management [6], surveillance [3], and con-
sensus [25] to name a few. The future promises an increasing
trend in this direction, such as delivery drones which transport
goods (e.g. Amazon Prime Air [1]) or traffic rerouting algo-
rithms (e.g. Google Maps Navigation) that rely on broadcasted
user locations to achieve their goals. Effective coordination,
however, requires trust. In order for these multi-robot systems
to perform their tasks optimally, transmitted data is often
assumed to be accurate and trustworthy; an assumption that
is easy to break. A particularly challenging attack on this
assumption is the so-called “Sybil attack.”
In a Sybil attack a malicious agent can generate (or spoof)

a large number of false identities to gain a disproportionate
influence in the network.1 These attacks are notoriously easy
to implement [31] and can be detrimental for multi-robot
networks. An example of this is coverage, where an adversarial
client can spoof a cluster of clients in its vicinity in order
to create a high local demand, in turn denying service to
legitimate clients (see Figure 1). Although there is a vast body
of literature dedicated to cybersecurity in general multi-node
networks (e.g. a wired LAN), the same is not true for multi-
robot networks [14, 28], leaving them largely vulnerable to
these types of attacks. This is because many characteristics
unique to robotic networks make security more challenging;
for example, traditional key passing or cryptographic authen-
tication is difficult to maintain due to the highly dynamic and
distributed nature of multi-robot teams where clients often
enter and exit the network.
1Please refer to [7, 24] for a detailed treatment of this class of cyber attacks.

Fig. 1: Sybil Attack on Coverage: A server robot provides loca-
tional coverage to legitimate clients when no attack is present. In a
Sybil attack, an adversary spoofs fake clients to draw away coverage
from the legitimate clients.

This paper addresses the challenge of guarding against Sybil
attacks in multi-robot networks. We focus on the general
class of problems where a group of server robots coordinate
to provide some service using the broadcasted locations of
a group of client robots. Our core contribution is a novel
algorithm that analyzes the received wireless signals to detect
the presence of spoofed clients spawned by adversaries. We
call this a “virtual spoofer sensor” as we do not use specialized
hardware nor encrypted key exchange, but rather a commercial
Wi-Fi card and software to implement our solution. Our virtual
sensor leverages the rich physical information already present
in wireless signals. At a high level, as wireless signals prop-
agate, they interact with the environment via scattering and
absorption from objects along the traversed paths. Carefully
processed, these signals can provide a unique signature or
“spatial fingerprint” for each client, measuring the power of
the signal received along each spatial direction (Fig. 2). Unlike
message contents such as reported IDs or locations which ad-
versaries can manipulate, spatial fingerprints rely on physical
signal interactions that cannot be exactly predicted [12, 22].
Using these derived fingerprints, we show that a confidence

weight, α ∈ (0, 1) can be obtained for each client in the
network. We prove that these confidence weights have a
desirable property where legitimate clients have an expected
confidence weight close to one, while spoofed clients will have
an expected confidence weight close to zero. A particularly
attractive feature of confidence weight α is that it can be
readily integrated as a per-client weighting function into a
wide variety of multi-robot controllers. More importantly, the
analytical bounds on these weights can provably limit the ill-
effects of spoofers on the performance of these controllers.
This paper demonstrates this capability in the context of the
well-known locational coverage algorithm [5, 29].
We provide an extensive experimental evaluation of our

theoretical claims using a heterogeneous team of air/ground
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Fig. 2: Spatial Fingerprints: A quadrotor server measures the
directional signal strength of each client (here, simplified to 2-D).
The blue client has one line-of-sight peak; the other, 2 signal paths.

robots consisting of two AscTec Hummingbird platforms and
ten iRobot Create platforms. We conduct our experiments
in general indoor settings with randomly placed clients and
demonstrate a spoofer detection rate of 96%. For the case of
coverage we find that the converged positions of the service
robots is on average 3 cm from optimal even when more than
75% of total clients in the network are spoofed.
Contributions of this paper: We develop a virtual sensor for
spoofing detection which provides performance guarantees in
the presence of Sybil attacks and is applicable to a broad class
of problems in distributed robotics. We show that the influence
of spoofers is analytically bounded under our system in a
coverage context, where each robotic node providing coverage
remains within a radius of its position in the absence of an
attack. Our theoretical results are validated extensively through
experiments in diverse settings.

II. RELATED WORK

The problem of Sybil attacks has been studied in general
multi-node, often static, networks, and many tools have been
developed for these settings. Past work falls under three
categories: (1) Cryptographic Authentication Schemes can be
used to prevent Sybil Attacks (See Table 7 in [37]). These re-
quire trusted central authorities and computationally expensive
distributed key management, to account for dynamic clients
that enter and leave the network [37]. (2) Non-cryptographic
techniques in the wireless networking community leverage
wireless physical-layer information to detect spoofed client
identities or falsified locations [15, 40, 38, 39]. These rely
on bulky and expensive hardware like large multi-antenna
arrays, that cannot be mounted on small robotic platforms.
(3) Recent techniques have attempted to use wireless signal
information like received signal strength (RSSI) [35, 27] and
channel state information [21]. Such techniques need clients
to remain static, since mobility can cause wireless channels
to fluctuate rapidly [2]. In addition, they are susceptible to
power-scaling attacks, where clients scale power differently to
imitate different users. In sum, the above systems share one or
more of the following characteristics making them ill-suited
to multi-robot networks: (1) Require computationally-intensive
key management; (2) Rely on bulky and expensive hardware;
(3) Assume static networks. Indeed past work has highlighted

the gravity and apparent sparsity of solutions to cyber-security
threats in multi-robot networks [14, 28, 4].
Unlike past work, our solution has three attributes that

particularly suit multi-robot networks: (1) It captures physical
properties of wireless signals and therefore does not require
distributed key management [37]. (2) It relies on cheap com-
modity Wi-Fi radios, unlike hardware-based solutions [38, 40].
(3) It is robust to client mobility and power-scaling attacks.
Finally, our system builds on Synthetic Aperture Radar

(SAR) to construct signal fingerprints [8]. SAR has been
widely used for radar imaging [8, 16] and indoor position-
ing [18, 17, 34, 11]. In contrast, this paper builds upon SAR
to provide cyber-security to multi-robot networks. In doing
so, it provides theoretical security guarantees that are validated
experimentally. These integrate readily with performance guar-
antees of existing multi-robot controllers, like the well-known
robotic coverage controllers [5, 29] as shown in Sec. §VI.

III. PROBLEM STATEMENT
This paper focuses on problems where the knowledge of

agent positions facilitates some collaborative task. Specifically,
it assumes two groups of agents, “clients” requiring some type
of location-based service such as coverage or goods delivery
and “servers” whose positions are optimized in order to pro-
vide the service to its clients. Let P := {p1, . . . , pc} denote the
client positions in R3. LetX := {x1, . . . , xm} be the positions
of the servers in R3 and the notation [m] = {1, . . . ,m} denote
their indices. We consider the case where a subset of the
clients, S ⊂ P ,|S| = s are “spoofed” clients.
Definition 3.1 (Spoofed Client): A spoofed client is a client

with a reported position p ∈ R3, different from its ground truth
position p̄ ∈ R3 beyond a given error tolerance σ > 0◦, with
respect to any server robot in the network. Specifically, let el =
∠((xl−p), (xl− p̄)) be the angle between a server at position
xl and a client at reported position p. Then a client whose
angle el exceeds σ degrees, to any server xl ∈ X , is considered
spoofed. Clients who are not spoofed are “legitimate” clients.2
A single adversarial client can generate an arbitrary number
of spoofed clients, each with fabricated positions.
Threat Model: Our threat model considers one or more
adversarial robot clients with one Wi-Fi antenna each. The
adversaries can be mobile and scale power on a per-packet ba-
sis. We only consider adversarial clients.3 Adversarial clients
perform the “Sybil Attack” to forge packets emulating s non-
existent clients, where s can exceed the number of legitimate
clients. More formally:
Definition 3.2 (Sybil Attack): Define a network of clients

and servers as P ∪ X , where a subset S of the clients are
spoofers, such that P = S ∪ S̃. We assume that set P is
known but knowledge of which clients are spoofed (i.e., in S)
is unknown. This attack is called a “Sybil Attack.”
To counter the Sybil attack, this paper has two objectives.

First, we find a relation capturing directional signal strength

2Sec. §VII examines spoofed clients co-aligned with legitimate clients.
3The case of adversarial server robots is left for future work although many

of the concepts in the current paper are extensible to this case as well.



between a client i and a server l. We seek a mapping
Fil : [0, π

2 ] × [0, 2π] &→ R such that for any 3D direction
(θ,φ) defined in Fig. 4, the value Fil(θ,φ) is the power of
the received signal from client i along that direction. Using
this mapping, or “fingerprint”, our first problem is to derive a
confidence weight whose expectation is provably bounded near
1 for legitimate clients and near 0 for spoofed clients. Further,
we wish to find these bounds analytically from problem pa-
rameters like the signal-to-noise ratio of the received wireless
signal. We summarize this objective as Problem 1 below:

Problem 1: Spoofer Detection Let Fi be the set of finger-
prints measured from all clients j ∈ [c] and servers l ∈ [m] in
the neighborhood, Ni, of client i.4 Here, a neighborhood of
client i, Ni, are all agents that can receive Wi-Fi transmissions
sent by client i. Using Fi, derive a confidence weight αi(Fi) ∈
(0, 1) and a threshold ωi(σ2

i ) > 0 where σ2
i represents error

variances such as the signal-to-noise ratio that are assumed
to be given. Find ωi(·) to have the provable property of
differentiating spoofer clients whereby spoofer clients are
bounded below this threshold, i.e. E[αi] ≤ ω, and legitimate
clients are bounded above this threshold E[αi] ≥ 1− ω.

Our second objective is to apply our spoofer detection
method to multi-robot control problems. We consider the
well-known coverage problem in [5, 29]. We show that by
integrating the confidence weight from Problem 1, we can
analytically bound the error in performance caused by spoofed
clients in the network. We consider the coverage problem
where an importance function is defined over an environment
and where the positions of the clients correspond to peaks
in the importance function. Here, servers position themselves
to maximize their proximity to these peaks, to improve their
coverage over client robots. If CV = {x∗

1, . . . , x
∗
m} is the set of

server positions optimized by the coverage controller with zero
spoofers, we wish to guarantee that server positions optimized
with spoofers present, CVα

, is “close” to CV . We state this
second objective more specifically as Problem 2 below:

Problem 2: Sybil-resillience in Multi-Robot Coverage
Consider a locational coverage problem where an importance
function ρ(q) > 0 is defined over an environment Q ⊂ R3

and q ∈ Q. Specifically, consider an importance function that
can be decomposed into terms, ρi(q), depending on each
client’s position, i ∈ [c] (for example, each client position
corresponds to a peak), i.e. ρ(q) = ρ1(q) + . . . + ρc(q). Let
CV = {x∗

1, . . . , x
∗
m} be the set of server positions returned

by an optimization of ρ(q) over X , where there are zero
spoofed clients in the network. Under a Sybil attack, let
CVα

= {x1, . . . , xm} be the set of server positions returned
by an optimization of an α-modified importance function
ρ(q) = α1ρ1(q)+ . . .+αcρc(q) where the importance weight
terms αi satisfy the bounds stated in Problem 1. We wish to
4The more servers there are to sense the wireless transmissions from client i

(i.e. larger neighborhoods Ni), the easier it becomes to detect whether client i
is being spoofed. But we note that even with a single server this determination
can be made. A theoretical treatment of this point can be found in Sec. §V and
experimental results in Sec. §VII-A use as little as one server in the system.

find an ϵ(P) > 0 such that the set CVα
is within a distance

ϵ(P) to CV . CVα
is within a distance ϵ(P) to CV if ∀x ∈ CVα

there exists a unique y ∈ CV where dist(x, y) < ϵ(P). Here,
P is a set of problem parameters that we wish to find.

Intuitively, solutions to Problem 2 guarantee that under
a Sybil attack, all server positions computed using an α-
modified coverage controller are within a computable distance
ϵ(P) from their optimal positions (i.e. in the absence of
spoofers). Sec. §VI derives a closed-form for ϵ(P) and shows
the set P of problem parameters to be the number of spoofers,
the footprint of the environment covered, and signal noise.
IV. FINGERPRINTS TO DETECT MALICIOUS CLIENTS
In this section, we develop unique client fingerprints based

on the physics of their wireless signals. Specifically, we
leverage wireless channels h, complex numbers measurable on
any wireless device characterizing the attenuation in power and
phase rotation signals experience as they propagate over the
air. These channels also capture the fact that wireless signals
are scattered by the environment, arriving at the receiver over
(potentially) several different paths [33]. Fig. 3 is an example
2D schematic of a wireless signal traversing from a client
robot to a server robot arriving along two separate paths: one
attenuated direct path at 40◦ and one reflected at 60◦. If the
server robot had a directional antenna, it could obtain a full 3D
profile of power of the received signal (i.e. |h|2) along every
spatial direction. This would be an ideal “spatial fingerprint”
since such a profile is 1) highly position dependent and 2) not
controllable by the sender (since the occurrence of individual
paths is due to reflectors in the environment).
Unfortunately directional antennas are composed of large

arrays of many antennas that are too bulky for small agile robot
platforms. Luckily, a well-known technique called Synthetic
Aperture Radar [8] (SAR) can be used to emulate such an
antenna using a commodity Wi-Fi radio. Its key idea is to use
small local robotic motion, such as spinning in-place, to obtain
multiple snapshots of the wireless channel that are then pro-
cessed like a directional array of antennas. SAR can be imple-
mented using a well-studied signal processing algorithm called
MUSIC [13] to obtain spatial fingerprints at each server robot.
Mathematically, we obtain a spatial fingerprint for each

wireless link between a server l and client i as a matrix
Fil : R× R → R. For each spatial path represented as (θ,φ)
(see Fig. 4), Fij maps to a scalar value representing the signal
power received along that path. More formally:

Fil(φ, θ) = 1/|Eign(ĥilĥ
†
il
)e

√
−1Ψil(φ,θ)|2 (1)

Where ĥil is a vector of the ratio of wireless channel snapshots
between two antennas mounted on the body of the server l and
Ψil(φ, θ) =

2πr
λ cos(φ−Bl) sin(θ−Γl), λ is the wavelength of

the signal and r is the distance between the antennas, Eign(·)
are noise eigenvectors, (·)† is conjugate transpose, and k is the
number of signal eigenvectors, equal to the number of paths.
While our above formulation is derived from MUSIC [13],

it varies in one important way: While MUSIC uses a single-
antenna channel snapshot hil, we use the channel ratio ĥil =



Fig. 3: Example Signal Fingerprint: (a)
A server (black) receives signal from client
(red) on 2 paths: direct along 40◦ attenuated
by obstacle (shaded) and reflected by wall
along 60◦. (b) shows corresponding finger-
print with peaks at 40◦ and 60◦ with heights
corresponding to their relative attenuations.

Fig. 4: 3-D Angles: The figure depicts the
notation for the azimuthal angle φ and polar
angle θ for the direct path from a ground
client (red) to aerial server robot (black)
in 3-dimensions. More generally, the set of
all angles between client i and server l are
denoted as Φil, Θil respectively.

Symbol Meaning
m, c, s No. of servers, clients, spoofers
pi, xl Position of client i / server l
Fil, k Fingerprint of i at l, k peaks
ĥil M × 1 channel ratios of i to l

f(· ;µ,σ2) PDF of normal distribution
g(· ;µ,σ2) min(1,

√
2πf(x;µ,σ2))

κ Constant = ((
√
2 +

√
π)/π)2

αi, βi confidence, honesty metric of i
γij Similarity metric of client i, j
SNR Signal-to-noise ratio
RSSI Received Signal Strength
σ2

θ , σ2

φ Variance in peak shifts of Fil

σ̂2

θ , σ̂2

φ σ2

θ , σ2

φ plus measurement error
CVL , CVα Coverage centroid of optimal,

our system; error e⃗ within ϵ
L(Q), ρ(q) Footprint, Mass function

Fig. 5: Table of Most Common Notations

h1il/h2il between two antennas. This modification provides
resilience to intentional power scaling by the sender since
scaling his transmit power by χ yields a measured ratio
ĥil = χh1il/(χh2il); a value unaffected by power scaling.

V. CONSTRUCTING A CLIENT CONFIDENCE WEIGHT

In this section, we leverage the unique client fingerprints
Fil(φ, θ) for each user i relative to the robotic server l to
generate a confidence weight αi ∈ [0, 1] on whether client i
is legitimate or not. αi approaches 1 if client i is suspected
to be legitimate, and 0 otherwise. It is defined as the product
of two components: the honesty metric βi, and the similarity
metric γij . These components measure the likelihood of the
following events: (1) The honesty metric βi captures whether
client i is honest about the position it reports. Specifically, βi

approaches 1 if the client i’s reported location has a corre-
sponding peak in its fingerprint; (2) The similarity metric γij
captures whether clients i is identical to another client j (i.e.
is a spoofed client). γij approaches 1 if client i’s fingerprint
appears identical to another client j. Mathematically:

αi =βi

∏

j ̸=i

(1− γij) where, βi =
∏

l

L(i is at (φil, θil)|Fil)

γij =
∏

l

L(i spoofs j|Fil, Fjl) (2)

Here, L(·) denotes likelihood of an event and (φil, θil) are the
expected direction of client i, from its reported location.
Defining Honesty and Similarity Metric: To define the
honesty metric βi and similarity metric γij precisely, one must
account for the effect of noise. Specifically, both these metrics
inspect the locations of peaks of client fingerprints. In practice
however, these peaks may have slight shifts owing to noise.
This means that any comparison between peak locations must
permit some variance due to these shifts. Fortunately, noise
in wireless environments can be modeled closely as additive
white-Gaussian [33]. As the following lemma shows, this
results in shifts in peaks that are also Gaussian, meaning that
their variance is easy to model and account for. More formally,
the lemma states that the shifts are normally distributed with

zero mean and well-defined variance, based on the signal-to-
noise ratio (SNR) of the wireless medium:
Lemma 5.1: Let ∆θi,∆φi denote the error between the

azimuthal and polar angle of the uncorrelated ith path of a
(potentially multipath) source and the corresponding angles
of the (local) maximum in the profile F (φ, θ), gathered over
a large number of uniformly gathered packets (i.e. SAR
snapshots) for θ ∈ (10◦, 80◦). Then∆θi and∆φi are normally
distributed with a mean 0, and expected variance σ2

φ and σ2
θ :

σ2
θ = σ2

φ =9λ2/(8Mπ2r2SNR)

Where, λ is the wavelength of the signal, SNR is the signal-
to-noise ratio in the network5, M is the number of packets
per-rotation, and r is the distance between the antennas. "

The above lemma follows from well-known Cramer-Rao
bounds [23, 10, 9] shown previously for linear antenna move-
ments in SAR [32] but readily extensible to circular rotations
(proof in supplementary material). Using this lemma, we can
define the honesty metric βi as the likelihood that the client
is at its reported location, subject to this Gaussian error and
additional measurement error in reported locations.
Definition 5.2: (βi) Let φFil

and θFil
denote the closest

local maximum in Fil(φ, θ) to (φil, θil). We denote σ̂2
φ and σ̂2

θ

as the variances in angles σ2
φ and σ2

θ plus any variance due to
measurement error of reported locations that can be calibrated
from device hardware. We define βi for client i as:

βi =
∏

l

g(φil − φFil
; 0, σ̂2

φ)× g(θil − θFil
; 0, σ̂2

θ) (3)

Where g(x;µ,σ2) = min(1,
√
2πf(x;µ,σ2)) is a normalized

Gaussian PDF f(x;µ,σ2) with mean µ and variance σ2. "

Similarly, the similarity metric γij is the likelihood that two
clients share identical peaks in their fingerprints, subject to
Gaussian shift in their respective peaks from Lemma. 5.1.
Definition 5.3: (γij) Let (Φil,Θil) and (Φjl,Θjl) denote

the ordered set of local maxima in profiles Fil and Fjl. We

5For clarity, we drop dependence on i, l for SNR, σθ and σφ



define γij for client i relative to client j as:

γij =
∏

φi∈Φil,φj∈Φjl

g(φi − φj ; 0, 2σ
2
φ)

∏

θi∈Θil,θj∈Θjl

g(θi − θj ; 0, 2σ
2
θ) (4)

Where g(·;µ,σ2) is as defined in Definition. 5.2. "

Defining the Confidence Weight: We notice that Eqn. 2, 3
and 4 fully define αi for each client i. In summary, the
confidence weight is computed in three steps: (1) Obtain the
client fingerprint using SAR on wireless signal snapshots.
(2) Measure the variance of peak locations of these client
fingerprints using their Signal-to-Noise Ratio. (3) Compute the
similarity and honesty metrics using their above definitions to
obtain the confidence weight. Algorithm 1 below summarizes
the steps to construct αi for a given client i.

Algorithm 1 Algorithm to Compute Client Confidence Weight
◃ Input: Ratio of Channels ĥil and SNR
◃ Output: Confidence Weight, αi for client i
◃ Step (1): Measure fingerprints for client i
for l = 1, . . . ,m do
for φ ∈ {0◦, . . . , 360◦}; θ ∈ {0◦, . . . , 360◦} do

Find Fil(φ, θ) using a single spin to get ĥil (Eqn. 1)
end for

end for
◃ Step (2): Measure variances in peak locations using SNR
σ2
θ = σ2

φ = Apply Lemma 5.1 SNR
◃ Step (3): Find honesty, similarity and confidence weight
βi = Apply Defn. 5.2 using σ2

θ , σ2
φ, peaks of Fil

for j = {1, . . . , c} \ {i} do
γij = Apply Defn. 5.3 using σ2

θ , σ2
φ, peaks of Fil, Fjl

end for
αi = βi

∏

j ̸=i(1− γij)

We now present our main result that solves Problem 1 in the
problem statement (Sec. §III). The following theorem says the
expected αi’s of legitimate nodes approach 1, while those of
spoofers approach 0, allowing us to discern them under well-
defined assumptions: (A.1) The signal paths are independent.
(A.2) Errors in azimuth and polar angles are independent.
(A.3) The clients transmit a large number of packets.
Theorem 5.4: Consider a network with m servers and c

clients. A new client i either: 1) spoofs s clients reporting
a random location, potentially scaling power, or; 2) is a
uniformly randomly located legitimate client. Let αspoof ,
αlegit be the confidence weights in either case. Assume that
the client obtains its signals from servers along k paths. Under
A.1-A.3, the expected αspoof ,αlegit are bounded by:

E[αspoof ] ≤
[

√

σ̂θσ̂φκ
]m

[2mkσθσφ]
s

E[αlegit] ≥ 1− cmσ̂θσ̂φ

[√

2σθσφκ
]mk (5)

Where κ =
(

(
√
2 +

√
π)/π

)2, σθ, σφ, σ̂θ, σ̂φ are the variances
defined in Lemma 5.1 that depend on signal-to-noise ratio (the
latter include measurement error in reported locations).

Proof Sketch: To give some intuition on why the theorem
holds, we provide a brief proof sketch (detailed proof is avail-
able in the supplementary material). To begin with, notice from
their definitions that both the honesty metric βi and confidence
metric γij inspect peaks in fingerprints Fil (Lemma 5.1). For
the honesty metric βi of a legitimate node, this peak location
should be normally distributed (subject to noise, measurement
error) around the reported location. For a spoofer that reports a
random location, the peak location is uniformly distributed. A
similar (but inverse) argument holds for γij . Hence, we simply
need to show is that the definitions of βi and γi which are both
products of the form g(X) can be bounded in expectation if
X is uniform or normally distributed.
To this end, consider two random variables u and ν which

are respectively uniform and normally distributed between 0
and 2π with mean 0 and variance σ2. Let S =

√
2σ(ln 1

σ
)0.5,

the value at which the minimization in g(x) is triggered.
E[g(ν)] and E[g(u)] are as follows:

E[g(ν)] =

∫ S

−S

f(x; 0,σ2)dx+
√
8π

∫ −S

−∞
[f(x; 0;σ2)]2dx

≥
∫ S

−S

f(x; 0,σ2)dx = erf
(

S

σ
√
2

)

≥ 1− σ (6)

Where erf(·) is the well known Error function and using
1−erf(x) < e−x2 . Similarly, we can evaluate E[u(n)] as:

E[g(u)] =

∫ S

−S

1

2π
dx+ 2

√
2π

∫ −S

−2π

1

2π
f(x; 0;σ2)dx

≤ S

π
+

1√
2π

(

1− erf( S

σ
√
2
)

)

≤
√
σκ (7)

By assumptions A.1-A.3, we can apply these bounds to
write the expectation of the honesty metric βi as a product
of those of the independent variables:

E[βspoof ] =
∏

l

E[g(u; 0, σ̂2
φ)]E[g(u; 0, σ̂2

θ)] ≤
[

√

σ̂θσ̂φκ
]m

E[βlegit] =
∏

l

E[g(ν; 0, σ̂2
φ)]E[g(ν; 0, σ̂2

θ)] ≥ 1−mσ̂θσ̂φ

Applying a similar argument, the similarity metric γ is:

E[γspoof ] =
k
∏

p=1

E[f(ν; 0, 2σ2
φ)f(ν; 0, 2σ

2
θ)] ≥ 1− 2mkσθσφ

E[γlegit] =
k
∏

p=1

E[g(u; 0, 2σ2
φ)g(u; 0, 2σ

2
θ)] ≤

[√

2σθσφκ
]mk

Combining the above equations, we prove Eqn. 5. "

A natural question one might ask is if the above lemma
holds in general environments, where its assumptions A.1-A.3
may be too stringent. Our extensive experimental results in
Sec. VII show that our bounds on α approximately predict
performance in general environments. Further, Sec. §VII-A
shows that results from an anechoic chamber, which emulate
free-space conditions where the lemma’s assumptions can be
directly enforced, tightly follow the bounds of Lemma 5.1.
In sum, one can adopt the above lemma to distinguish

adversarial nodes from legitimate nodes, purely based on α.



Fig. 6: Coverage guarantee: An ϵ ball around the ground-
truth centroid, CVlegitimate . Theorem 6.1 finds ϵ(P) so that server
positions remain within this ball even in the presence of
spoofed clients.

However, an interesting alternative is to incorporate α directly
into multi-robot controllers to give provable service guarantees
to legitimate nodes. The next section show how αi readily
integrates with robotic coverage controllers, in particular.

VI. THREAT-RESISTANT DISTRIBUTED CONTROL
This section describes how our spoof detection method

from Sec. §V integrates with well-known coverage controllers
from [5, 29, 30]. The area coverage problem deals with the
positioning server robots to minimize Euclidean distance to
certain areas of interest in the environment. These areas are
determined by an importance function ρ(q) that is defined over
the environment Q ⊂ R3 of size L(Q). For our coverage
problem, the peaks of the importance are determined by client
positions P , for e.g., ρ(q, P ) = ρ1(q)+. . .+ρc(q) where ρi(q)
quantifies the influence of client i’s position on the importance
function. Using [5, 29, 30], server robot positions optimizing
coverage over ρ(q, P ) will minimize their distance to clients.
To account for spoofed clients, we modify the importance

function ρ(q, P ) using the αi for each client i ∈ [c] that is
computed by Algorithm 1. For e.g., we can multiply each
client-term in ρ(q, P ) by its corresponding confidence weight:
ρ(q, P )α = α1ρ1(q) + . . . + αcρc(q). Given the properties
of these weights derived in Theorem 5.4, ie. αi is bounded
near zero for a spoofed client and near one for a legitimate
client, the effect of multiplication by the α’s is that terms
corresponding to spoofed clients will be bounded to a small
value (see Fig. 6); providing resilience to the spoofing attack.
For simplicity, we assume the importance function ρ(q) is

static (from [5]) and α’s from Algorithm 1 are computed once,
at the beginning of the coverage algorithm. We note that our
approach readily extends to the adaptive case in [29, 30] when
the importance function (and location of clients) change, by
having the service robots exchange their learned importance
function. This in turn can trigger a re-calculation of α values.
We now show that computed server positions are impacted

by spoofers to within a closed-form bound, that depends on
problem parameters like signal-to-noise ratio. Theorem 6.1
below solves Problem 2 of our problem statement (Sec. §III).
Theorem 6.1: Let X be a set of server robot positions and

P = S ∪ S̃ be a set of client positions where S the set
of spoofed client positions, and S̃ is the set of legitimate
clients. The identities of the clients being spoofed is assumed

unknown. Let {α1, . . . ,αc} be a set of confidence weights sat-
isfying Theorem 5.4 and assume a known importance function
ρ(q, P ) = ρ1(q)+ . . .+ρc(q) that is defined over the environ-
ment Q ⊂ R3 of size L(Q). Define CV = {x∗

1, . . . , x
∗
m} to be

the set of server positions optimized over ρ(q, S̃), ie. where
there are zero spoofed clients and CVα

to be the set of server
positions optimized over ρ(q, P )α = α1ρ1(q) + . . .+αcρc(q)
where there is at least one spoofed client, ie. |S| ≥ 1. If
{α1, . . . ,αc} satisfy Theorem 5.4, we have that ∀x ∈ CVα

there exists a unique y ∈ CV , where in the expected case
dist(x, y) ≤ ϵ(m, s,σφ,σθ,κ)

ϵ = max
{

[
√

σ̂θσ̂φκ]
m[2mkσθσφ]

s, cmσ̂θσ̂φ[
√

2σθσφκ]
mk

}

L(Q)

andm, s,σφ,σθ,κ are problem parameters as in Theorem 5.4.
Proof: We make an important observation that E[αi] ≤ a

if client i is a spoofed node, and E[αi] ≥ b otherwise; hence:

ρ(q, P )α = a(ρ1(q) + . . .+ ρs(q)) + b(ρs+1(q) + . . .+ ρc(q))

is the maximal effect that the presence of spoofed clients
can have on the importance function. Intuitively, all spoofed
clients have a weight of at maximum a and all legitimate
clients have a reduced weight of at minimum b. Using this
observation we can bound the influence of the spoofed clients
on computed router control inputs (see Fig. 6). Specifically,
recall from [5] that the position control for each server is:
ul = −2MV (CV − cl), where MV =

∫

V
ρ(q)dq, CV =

1
Mv

∫

V
qρ(q)dq and V is the voronoi partition for router l

defined as all points q ∈ Q with dist(q, xl) < dist(q, xg) where
g ̸= l. Using the importance function from above we can write
CVα

= 1
MVα

(aCVS
+ bCVL

) where CVS
is the component

of the centroid computed over spoofed nodes and CVL
is the

component of the centroid computed over legitimate nodes and
MVα

is defined shortly. We rewrite CVS
as a perturbation of

the centroid over legitimate nodes as CVS
= CVL

+v⃗∥e⃗∥ where
v⃗ is an arbitrary unit vector and the magnitude of e⃗ can be as
large as the length of the operative environment,∥e⃗∥ ≤ L(Q).
Let the total mass be T = MVs

+MVL
. We can write a similar

expression for the mass MVα
using the bounds a and b as

MVα
= bT + (a− b)MVL

. Substituting these expressions into
CVα

and simplifying gives CVα
=

CVL
+bv⃗∥e⃗∥

bT+(a−b)MVL

. Combining
this expression with the router control input:

ul = k ( [(a+ b)CVL
− pl] + b∥e⃗∥v⃗ ) (8)

Where k = −2(bT + aMVL
). If (a + b) = 1, this

control input drives the server robot l to a neighbor-
hood of size ϵ = b∥e⃗∥ ≤ bL(Q) centered around
the centroid CL defined over the legitimate clients. So if
b = max

{

[
√

σ̂θσ̂φκ]m[2mkσθσφ]s, cmσ̂θσ̂φ[
√

2σθσφκ]mk
}

from Theorem 5.4 Equation (5), then:
ϵ = max

{

[
√

σ̂θσ̂φκ]
m[2mkσθσφ]

s, cmσ̂θσ̂φ[
√

2σθσφκ]
mk

}

L(Q)

then we have (a+ b) = 1 as desired, proving the lemma. "

VII. EXPERIMENTAL RESULTS
This section describes our results from an experimental

evaluation of our theoretical claims. Our aerial servers were



 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.2 0.4 0.6 0.8 1# 
of

 C
lie

nt
s 

(N
or

m
al

iz
ed

)

α value bins

Anechoic Chamber
Spoofer

Legitimate

E[αspoof] from Thm. 5.4

E[αlegit] from Thm. 5.4

(a) α Histogram (Free-space)

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.2 0.4 0.6 0.8 1# 
of

 C
lie

nt
s 

(N
or

m
al

iz
ed

)

α value bins

Indoor Environment
Spoofer

Legitimate

E[αspoof] from Thm. 5.4

E[αlegit] from Thm. 5.4

(b) α Histogram (Multipath)

Fig. 7: Experimental Evaluation of α: (a) In an anechoic
chamber approximating our assumptions A.1-A.3 (§5.4), α agrees
with theoretical expectations. (b) in a typical multipath environment,
experimental results largely follow theoretical predictions. Data shows
that α = 0.5 is a good threshold value.
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Fig. 8: Co-Aligned Clients: We vary the angle φ between a
legitimate and malicious client, relative to a single server and plot
α, in (a) an anechoic chamber and (b) an indoor environment. The
minimum φ needed to distinguish the clients is only: (a) 3◦ in
freespace, (b) 0◦ in multipath settings.
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Fig. 9: Experimental Results for Sybil Attack in Multi-Agent Coverage: Depicts the total distance of converged quadrotor server positions
(white ×) to legitimate clients ( )and six spoofed clients ( ). We compare this quantity for: (a) A system with no security, where each
spoofed clients create a false peak in importance function, (b) ground truth importance function, and (c) our system where applying α weights
from Algorithm 1 recovers the true importance function. (d) depicts the resulting ground-truth cost computed with respect to legitimate clients
as spoofed nodes are introduced to the system. The red dotted line shows that our system performs close to ground truth even as spoofed
clients comprise more than twice the network.

Fig. 10: Experimental setup

implemented on two AscTec
Atomboard computing plat-
forms. equipped with Intel
5300 Wi-Fi cards with two an-
tennas each, mounted on two
AscTec Hummingbird quadro-
tors. Our clients were ten
iRobot Create robots, each
equipped with Asus EEPC netbooks and single-antenna Wi-
Fi cards. An adversarial client forged multiple identities by
spawning multiple packets containing different identities (up
to 75% of the total number of legitimate clients in the system),
and could use a different transmit power for each identity. The
adversary advertised identities by modifying the Wi-Fi MAC
field, a common technique for faking multiple identities [31].
Evaluation: We evaluate our system in two environments: (1)
An indoor environment equipped with a Vicon motion capture
system to aid quadrotor navigation; (2) An anechoic chamber
to emulate a free-space setting that closely models assumptions
A.1-A.3 in Sec. §V. We estimated theoretical expected stan-
dard deviations σθ,σφ of about 0.7 degrees (see Lemma 5.1).
After including the standard deviation in reported location,
based on the known errors of our localization framework, this

increased to σ̂θ, σ̂φ of about 2 degrees (see Theorem 5.4).
We compare our system against a baseline that identifies fake
clients by comparing their Received Signal Strength Indicators
(RSSI) against other clients in the network, akin to [27].
Roadmap: We conduct three classes of experiments: (1) Mi-
crobenchmarks to validate our client confidence metric, both in
free-space and multipath indoor environments (Sec. §VII-A).
(2) Experiments applying this confidence metric to quarantine
adversaries (Sec. §VII-B). (3) Application of our system to se-
cure the coverage problem against Sybil attacks (Sec. §VII-C).

A. Microbenchmarks on the Confidence Metric

This experiment studies the correctness of our system’s
confidence metric α. Recall from theory in §V that α’s
measured by a server robot distinguish between unique clients
based on their diverse physical directions and the presence of
multipath reflections. Thus, a free-space environment (i.e. with
no multipath) is particularly challenging to our system.
Method: To approximate free-space, we measured α values in
a radio-frequency anechoic chamber which attenuates reflected
paths by about 60 dB, for a legitimate and malicious client
from one server robot 12 m away. Next, in a 10 m x 8 m indoor
room (a typical multipath case), we measured α’s from one



server for up to ten legitimate clients and ten spoofed clients.
Results: In Fig. 7, the values of α in the anechoic cham-
ber tightly follow our theoretical bounds in Theorem 5.4
(Fig. 8(c)). As expected, our results in indoor multipath
environments exhibit a larger variance but follow the trend
suggested by theory. Further, we stress our confidence metric
by isolating the case of colinearity in both environments. In
Fig. 8, we consider a spoofing adversary initially co-aligned
with a legitimate client, and measure α as the angle of
separation, φ, is increased from 0◦ to 20◦ relative to the server
robot. In the anechoic chamber at φ close to 0◦, the fingerprints
of both the legitimate and adversarial nodes are virtually
identical, each with precisely one peak at 0◦. Consequently,
α for the legitimate node is much below 1, indicating that is
believed to be adversarial (i.e. the term 1−γ in α approaches
0 in Eqn. 2). However, α for the legitimate client quickly
approaches 1, even if φ = 3◦ in the anechoic chamber. In
fact, α is virtually identical to 1 beyond 10◦, indicating that a
single server robot can distinguish closely aligned legitimate
and adversarial clients even in free-space. Fig. 8b shows that
multipath can distinguish clients even at φ = 0◦, due to
additional reflected paths that help disambiguate these clients.

B. Performance of Sybil Attack Detection
In this experiment, we measure our system’s classification

performance on legitimate and spoofed clients, in the presence
of static, mobile, and power-scaling adversaries.
Method: Each run consisted of one quadrotor server, and
(randomly positioned) ten control clients, or nine legitimate
clients with an adversary reporting two to nine spoofed clients.
Each Sybil attack was performed under three modalities: (1)
a stationary attacker with a fixed transmission power, (2) a
mobile attacker (random-walk and linear movements), and (3)
an attacker scaling the per-packet power by a different amount
for each spoofed client, from 1 to 31 mW. The quadrotor server
classifies clients with an α < 0.5 as spoofed (see Fig. 7). The
baseline Received Signal Strength Indicator (RSSI) classifier
uses a 2 dB thresholded minimum dissimilarity, a technique
previously applied in static networks [27, 35].

Our System RSSI
TPR FPR TPR FPR

Stationary 96.3 3.0 81.5 9.1
Mobile 96.3 6.1 85.2 6.1

Power-scaling 100.0 3.0 74.1 27.3

TABLE I: Classification performance: True positive rates (TPR)
and false positive rates (FPR) when our system classifies clients with
α < 0.5 as spoofed, compared against a Received Signal Strength
(RSSI) baseline. We perform experiments across many robot client-
server topologies for 3 classes of adversaries — stationary, mobile,
and adversaries scaling power differently for each spoofed client.
Results: Table I summarizes our results for each modality.
Compared to the RSSI classifier, our technique exhibits a high
true positive and low false positive rate of about 96% and
4%, across multiple network topologies. In particular, because
our classifier computes α using the ratio of wireless signal
channels (Sec. §IV), it is robust to power-scaling Sybil attacks

where RSSI performs poorly. Our solution exhibits consistent
performance in both power-scaling and mobile scenarios.

C. Application to Multi-Agent Coverage
We implement the multi-agent coverage problem from [5],

where a team of aerial servers position themselves to minimize
distance to client robots at reported positions pi,i ∈ [c]. We use
an importance function ρ(q, P ) = ρ1(q) + . . .+ ρc(q) defined
in Section VI where each client term is a Gaussian-shaped
function ρi(q) = exp(− 1

2 (q − pi)T (q − pi)) (Fig. 9b). An α-
modified importance function is implemented as ρ(q, P )α =
α1ρ1(q)+. . .+αcρc(q) where the α terms are computed using
Algorithm 1 (Fig. 9c).
Method. For each experiment we randomly place three clients
i, j, and k in an 8 m x 10 m room along with two AscTec
quadrotor servers. Fig. 9(a)-(c) show an example client-router
topology, with an adversary spoofing six Sybil clients. We
measure the total distance of the routers upon convergence
from their optimal converged locations in three scenarios: (1)
a naive system with no cyber-security; (2) our system; (3) an
oracle that discards Sybil clients a priori.
Results: Fig. 9(a)-(c) depicts the converged locations for
a system with no security, an oracle, and our system in a
candidate topology. We observe that our system approximates
oracle performance, by incorporating α weights in our con-
troller. Fig. 9d demonstrates the ability of our system to bound
the cost near optimal even as spoofers enter the network
(comprising up to 300%).
Aggregate Results: Across multiple topologies and 12 sepa-
rate runs, the maximum distance from each quadrotor to the
oracle solution is on average 3.77 m (stdev: 0.86), in contrast
our system achieves proximity to oracle positions of 0.02 m
(stdev: 0.02).

VIII. DISCUSSION
We make the following observations and suggestions for

future work: (1) We note that many of the concepts described
in this paper are applicable to servers as well, since they also
communicate wirelessly. We leave this an interesting problem
for future work. (2) Our current implementation runs SAR by
making the quadrotor perform a single spin in place. However,
we believe it will be interesting for future implementations to
perform SAR using other forms of movement, say, along linear
paths.

IX. CONCLUSION
In this paper, we develop a new system to guard against

the Sybil attack in multi-robot networks. We derive theoretical
guarantees on the performance of our system, that are validated
experimentally. While this paper has focused on coverage,
it can be readily extended to guard against the Sybil attack
in other multi-robot contexts, e.g. unmanned delivery [19],
search-and-rescue [20] and formation control [36]. Beyond the
Sybil attack, this paper reveals the promise of using the physics
of wireless signals as the basis for holistic cyber-security in
multi-robot networks against a wide-range of attacks.
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